EconPapers    
Economics at your fingertips  
 

Subduction and collision processes in the Central Andes constrained by converted seismic phases

X. Yuan, S. V. Sobolev, R. Kind (), O. Oncken, G. Bock, G. Asch, B. Schurr, F. Graeber, A. Rudloff, W. Hanka, K. Wylegalla, R. Tibi, Ch. Haberland, A. Rietbrock, P. Giese, P. Wigger, P. Röwer, G. Zandt, S. Beck, T. Wallace, M. Pardo and D. Comte
Additional contact information
X. Yuan: GeoForschungsZentrum Potsdam
S. V. Sobolev: GeoForschungsZentrum Potsdam
R. Kind: GeoForschungsZentrum Potsdam
O. Oncken: GeoForschungsZentrum Potsdam
G. Bock: GeoForschungsZentrum Potsdam
G. Asch: GeoForschungsZentrum Potsdam
B. Schurr: GeoForschungsZentrum Potsdam
F. Graeber: GeoForschungsZentrum Potsdam
A. Rudloff: GeoForschungsZentrum Potsdam
W. Hanka: GeoForschungsZentrum Potsdam
K. Wylegalla: GeoForschungsZentrum Potsdam
R. Tibi: GeoForschungsZentrum Potsdam
Ch. Haberland: Freie Universität Berlin, Fachrichtung Geophysik
A. Rietbrock: Freie Universität Berlin, Fachrichtung Geophysik
P. Giese: Freie Universität Berlin, Fachrichtung Geophysik
P. Wigger: Freie Universität Berlin, Fachrichtung Geophysik
P. Röwer: Freie Universität Berlin, Fachrichtung Geophysik
G. Zandt: University of Arizona
S. Beck: University of Arizona
T. Wallace: University of Arizona
M. Pardo: Universidad de Chile, Departemento de Geofisico
D. Comte: Universidad de Chile, Departemento de Geofisico

Nature, 2000, vol. 408, issue 6815, 958-961

Abstract: Abstract The Central Andes are the Earth's highest mountain belt formed by ocean–continent collision1,2. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust2,3,4,5,6, dominated by tectonic shortening7,8,9,10. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovičić discontinuity—generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro–eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10–20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/35050073 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:408:y:2000:i:6815:d:10.1038_35050073

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35050073

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:408:y:2000:i:6815:d:10.1038_35050073