EconPapers    
Economics at your fingertips  
 

Correlated evolution of morphology and vocal signal structure in Darwin's finches

Jeffrey Podos ()
Additional contact information
Jeffrey Podos: University of Arizona

Nature, 2001, vol. 409, issue 6817, 185-188

Abstract: Abstract Speciation in many animal taxa is catalysed by the evolutionary diversification of mating signals1. According to classical theories of speciation, mating signals diversify, in part, as an incidental byproduct of adaptation by natural selection to divergent ecologies2,3, although empirical evidence in support of this hypothesis has been limited4,5,6. Here I show, in Darwin's finches of the Galápagos Islands, that diversification of beak morphology and body size has shaped patterns of vocal signal evolution, such that birds with large beaks and body sizes have evolved songs with comparatively low rates of syllable repetition and narrow frequency bandwidths. The converse is true for small birds. Patterns of correlated evolution among morphology and song are consistent with the hypothesis that beak morphology constrains vocal evolution, with different beak morphologies differentially limiting a bird's ability to modulate vocal tract configurations during song production. These data illustrate how morphological adaptation may drive signal evolution and reproductive isolation, and furthermore identify a possible cause for rapid speciation in Darwin's finches.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/35051570 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:409:y:2001:i:6817:d:10.1038_35051570

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35051570

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:409:y:2001:i:6817:d:10.1038_35051570