Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration
Alyson E. Fournier,
Tadzia GrandPre and
Stephen M. Strittmatter
Additional contact information
Alyson E. Fournier: Yale University School of Medicine
Tadzia GrandPre: Yale University School of Medicine
Stephen M. Strittmatter: Yale University School of Medicine
Nature, 2001, vol. 409, issue 6818, 341-346
Abstract:
Abstract Nogo has been identified as a component of the central nervous system (CNS) myelin that prevents axonal regeneration in the adult vertebrate CNS. Analysis of Nogo-A has shown that an axon-inhibiting domain of 66 amino acids is expressed at the extracellular surface and at the endoplasmic reticulum lumen of transfected cells and oligodendrocytes1. The acidic amino terminus of Nogo-A is detected at the cytosolic face of cellular membranes1 and may contribute to inhibition of axon regeneration at sites of oligodendrocyte injury2,3. Here we show that the extracellular domain of Nogo (Nogo-66) inhibits axonal extension, but does not alter non-neuronal cell morphology. In contrast, a multivalent form of the N terminus of Nogo-A affects the morphology of both neurons and other cell types. Here we identify a brain-specific, leucine-rich-repeat protein with high affinity for soluble Nogo-66. Cleavage of the Nogo-66 receptor and other glycophosphatidylinositol-linked proteins from axonal surfaces renders neurons insensitive to Nogo-66. Nogo-66 receptor expression is sufficient to impart Nogo-66 axonal inhibition to unresponsive neurons. Disruption of the interaction between Nogo-66 and its receptor provides the potential for enhanced recovery after human CNS injury.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/35053072 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053072
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35053072
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().