Pre-meiotic S phase is linked to reductional chromosome segregation and recombination
Yoshinori Watanabe (),
Shihori Yokobayashi,
Masayuki Yamamoto and
Paul Nurse
Additional contact information
Yoshinori Watanabe: University of Tokyo
Shihori Yokobayashi: University of Tokyo
Masayuki Yamamoto: University of Tokyo
Paul Nurse: Imperial Cancer Research Fund
Nature, 2001, vol. 409, issue 6818, 359-363
Abstract:
Abstract Meiosis is initiated from G1 of the cell cycle and is characterized by a pre-meiotic S phase followed by two successive nuclear divisions. The first of these, meiosis I, differs from mitosis in having a reductional pattern of chromosome segregation1,2. Here we show that meiosis can be initiated from G2 in fission yeast cells by ectopically activating the meiosis-inducing network. The subsequent meiosis I occurs without a pre-meiotic S phase and with decreased recombination, and exhibits a mitotic pattern of equational chromosome segregation. The subsequent meiosis II results in random chromosome segregation. This behaviour is similar to that observed in cells lacking the meiotic cohesin Rec8 (refs 3, 4), which becomes associated with chromosomes at G1/S phase, including the inner centromere, a region that is probably critical for sister-centromere orientation5. If the expression of Rec8 is delayed to S phase/G2, then the centromeres behave equationally. We propose that the presence of Rec8 in chromatin is required at the pre-meiotic S phase to construct centromeres that behave reductionally and chromosome arms capable of a high level of recombination, and that this explains why meiosis is initiated from G1 of the cell cycle.
Date: 2001
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/35053103 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053103
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35053103
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().