EconPapers    
Economics at your fingertips  
 

χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules

Kathleen M. Dohoney and Jeff Gelles ()
Additional contact information
Kathleen M. Dohoney: Brandeis University
Jeff Gelles: Brandeis University

Nature, 2001, vol. 409, issue 6818, 370-374

Abstract: Abstract Major pathways of recombinational DNA repair in Escherichia coli require the RecBCD protein—a heterotrimeric, ATP-driven, DNA translocating motor enzyme. RecBCD combines a highly processive and exceptionally fast helicase (DNA-unwinding) activity with a strand-specific nuclease (DNA-cleaving) activity (refs 1, 2 and references therein). Recognition of the DNA sequence ‘χ’ (5′-GCTGGTGG-3′) switches the polarity of DNA cleavage and stimulates recombination at nearby sequences in vivo. Here we attach microscopic polystyrene beads to biotin-tagged RecD protein subunits and use tethered-particle light microscopy to observe translocation of single RecBCD molecules (with a precision of up to ∼30 nm at 2 Hz) and to examine the mechanism by which χ modifies enzyme activity. Observed translocation is unidirectional, with each molecule moving at a constant velocity corresponding to the population-average DNA unwinding rate. These observations place strong constraints on possible movement mechanisms. Bead release at χ is negligible, showing that the activity modification at χ does not require ejection of the RecD subunit from the enzyme as previously proposed; modification may occur through an unusual, pure conformational switch mechanism.

Date: 2001
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/35053124 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053124

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35053124

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053124