Complexes of MADS-box proteins are sufficient to convert leaves into floral organs
Takashi Honma and
Koji Goto ()
Additional contact information
Koji Goto: Research Institute for Biological Sciences
Nature, 2001, vol. 409, issue 6819, 525-529
Abstract:
Abstract Genetic studies, using floral homeotic mutants, have led to the ABC model of flower development. This model proposes that the combinatorial action of three sets of genes, the A, B and C function genes, specify the four floral organs (sepals, petals, stamens and carpels) in the concentric floral whorls1,2. However, attempts to convert vegetative organs into floral organs by altering the expression of ABC genes have been unsuccessful3,4,5. Here we show that the class B proteins of Arabidopsis, PISTILLATA (PI) and APETALA3 (AP3), interact with APETALA1 (AP1, a class A protein) and SEPALLATA3 (SEP3, previously AGL9), and with AGAMOUS (AG, a class C protein) through SEP3. We also show that vegetative leaves of triply transgenic plants, 35S::PI;35S::AP3;35S::AP1 or 35S::PI;35S::AP3;35S::SEP3, are transformed into petaloid organs and that those of 35S::PI; 35S::AP3;35S::SEP3;35S::AG are transformed into staminoid organs. Our findings indicate that the formation of ternary and quaternary complexes of ABC proteins may be the molecular basis of the ABC model, and that the flower-specific expression of SEP3 restricts the action of the ABC genes to the flower.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/35054083 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:409:y:2001:i:6819:d:10.1038_35054083
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35054083
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().