Massive gene decay in the leprosy bacillus
S. T. Cole (),
K. Eiglmeier,
J. Parkhill,
K. D. James,
N. R. Thomson,
P. R. Wheeler,
N. Honoré,
T. Garnier,
C. Churcher,
D. Harris,
K. Mungall,
D. Basham,
D. Brown,
T. Chillingworth,
R. Connor,
R. M. Davies,
K. Devlin,
S. Duthoy,
T. Feltwell,
A. Fraser,
N. Hamlin,
S. Holroyd,
T. Hornsby,
K. Jagels,
C. Lacroix,
J. Maclean,
S. Moule,
L. Murphy,
K. Oliver,
M. A. Quail,
M.-A. Rajandream,
K. M. Rutherford,
S. Rutter,
K. Seeger,
S. Simon,
M. Simmonds,
J. Skelton,
R. Squares,
S. Squares,
K. Stevens,
K. Taylor,
S. Whitehead,
J. R. Woodward and
B. G. Barrell
Additional contact information
S. T. Cole: Unité de Génétique Moléculaire Bactérienne, Institut Pasteur
K. Eiglmeier: Unité de Génétique Moléculaire Bactérienne, Institut Pasteur
J. Parkhill: Sanger Centre, Wellcome Trust Genome Campus
K. D. James: Sanger Centre, Wellcome Trust Genome Campus
N. R. Thomson: Sanger Centre, Wellcome Trust Genome Campus
P. R. Wheeler: Veterinary Laboratories Agency, Weybridge, Surrey
N. Honoré: Unité de Génétique Moléculaire Bactérienne, Institut Pasteur
T. Garnier: Unité de Génétique Moléculaire Bactérienne, Institut Pasteur
C. Churcher: Sanger Centre, Wellcome Trust Genome Campus
D. Harris: Sanger Centre, Wellcome Trust Genome Campus
K. Mungall: Sanger Centre, Wellcome Trust Genome Campus
D. Basham: Sanger Centre, Wellcome Trust Genome Campus
D. Brown: Sanger Centre, Wellcome Trust Genome Campus
T. Chillingworth: Sanger Centre, Wellcome Trust Genome Campus
R. Connor: Sanger Centre, Wellcome Trust Genome Campus
R. M. Davies: Sanger Centre, Wellcome Trust Genome Campus
K. Devlin: Sanger Centre, Wellcome Trust Genome Campus
S. Duthoy: Unité de Génétique Moléculaire Bactérienne, Institut Pasteur
T. Feltwell: Sanger Centre, Wellcome Trust Genome Campus
A. Fraser: Sanger Centre, Wellcome Trust Genome Campus
N. Hamlin: Sanger Centre, Wellcome Trust Genome Campus
S. Holroyd: Sanger Centre, Wellcome Trust Genome Campus
T. Hornsby: Sanger Centre, Wellcome Trust Genome Campus
K. Jagels: Sanger Centre, Wellcome Trust Genome Campus
C. Lacroix: Unité de Génétique Moléculaire Bactérienne, Institut Pasteur
J. Maclean: Sanger Centre, Wellcome Trust Genome Campus
S. Moule: Sanger Centre, Wellcome Trust Genome Campus
L. Murphy: Sanger Centre, Wellcome Trust Genome Campus
K. Oliver: Sanger Centre, Wellcome Trust Genome Campus
M. A. Quail: Sanger Centre, Wellcome Trust Genome Campus
M.-A. Rajandream: Sanger Centre, Wellcome Trust Genome Campus
K. M. Rutherford: Sanger Centre, Wellcome Trust Genome Campus
S. Rutter: Sanger Centre, Wellcome Trust Genome Campus
K. Seeger: Sanger Centre, Wellcome Trust Genome Campus
S. Simon: Unité de Génétique Moléculaire Bactérienne, Institut Pasteur
M. Simmonds: Sanger Centre, Wellcome Trust Genome Campus
J. Skelton: Sanger Centre, Wellcome Trust Genome Campus
R. Squares: Sanger Centre, Wellcome Trust Genome Campus
S. Squares: Sanger Centre, Wellcome Trust Genome Campus
K. Stevens: Sanger Centre, Wellcome Trust Genome Campus
K. Taylor: Sanger Centre, Wellcome Trust Genome Campus
S. Whitehead: Sanger Centre, Wellcome Trust Genome Campus
J. R. Woodward: Sanger Centre, Wellcome Trust Genome Campus
B. G. Barrell: Sanger Centre, Wellcome Trust Genome Campus
Nature, 2001, vol. 409, issue 6823, 1007-1011
Abstract:
Abstract Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.
Date: 2001
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/35059006 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:409:y:2001:i:6823:d:10.1038_35059006
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35059006
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().