EconPapers    
Economics at your fingertips  
 

Earthquake slip on oceanic transform faults

Rachel E. Abercrombie () and Göran Ekström
Additional contact information
Rachel E. Abercrombie: Harvard University
Göran Ekström: Harvard University

Nature, 2001, vol. 410, issue 6824, 74-77

Abstract: Abstract Oceanic transform faults are one of the main types of plate boundary, but the manner in which they slip remains poorly understood. Early studies suggested that relatively slow earthquake rupture might be common1,2; moreover, it has been reported that very slow slip precedes some oceanic transform earthquakes, including the 1994 Romanche earthquake3,4,5. The presence of such detectable precursors would have obvious implications for earthquake prediction. Here we model broadband seismograms of body waves to obtain well-resolved depths and rupture mechanisms for 14 earthquakes on the Romanche and Chain transform faults in the equatorial Atlantic Ocean. We found that earthquakes on the longer Romanche transform are systematically deeper than those on the neighbouring Chain transform. These depths indicate that the maximum depth of brittle failure is at a temperature of ∼600 °C in oceanic lithosphere. We find that the body waves from the Romanche 1994 earthquake can be well modelled with relatively deep slip on a single fault, and we use the mechanism and depth of this earthquake to recalculate its source spectrum. The previously reported slow precursor can be explained as an artefact of uncertainties in the assumed model parameters.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/35065064 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:410:y:2001:i:6824:d:10.1038_35065064

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/35065064

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:410:y:2001:i:6824:d:10.1038_35065064