Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle
D. M. Kerrick () and
J. A. D. Connolly
Additional contact information
D. M. Kerrick: The Pennsylvania State University
J. A. D. Connolly: Swiss Federal Institute of Technology
Nature, 2001, vol. 411, issue 6835, 293-296
Abstract:
Abstract Volatiles, most notably CO2, are recycled back into the Earth's interior at subduction zones1,2. The amount of CO2 emitted from arc volcanism appears to be less than that subducted, which implies that a significant amount of CO2 either is released before reaching the depth at which arc magmas are generated or is subducted to deeper depths. Few high-pressure experimental studies3,4,5 have addressed this problem and therefore metamorphic decarbonation in subduction zones remains largely unquantified, despite its importance to arc magmatism, palaeoatmospheric CO2 concentrations and the global carbon cycle6. Here we present computed phase equilibria to quantify the evolution of CO2 and H2O through the subduction-zone metamorphism of carbonate-bearing marine sediments (which are considered to be a major source for CO2 released by arc volcanoes6). Our analysis indicates that siliceous limestones undergo negligible devolatilization under subduction-zone conditions. Along high-temperature geotherms clay-rich marls completely devolatilize before reaching the depths at which arc magmatism is generated, but along low-temperature geotherms, they undergo virtually no devolatilization. And from 80 to 180 km depth, little devolatilization occurs for all carbonate-bearing marine sediments. Infiltration of H2O-rich fluids therefore seems essential to promote subarc decarbonation of most marine sediments. In the absence of such infiltration, volatiles retained within marine sediments may explain the apparent discrepancy between subducted and volcanic volatile fluxes and represent a mechanism for return of carbon to the Earth's mantle.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/35077056 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:411:y:2001:i:6835:d:10.1038_35077056
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35077056
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().