EconPapers    
Economics at your fingertips  
 

Growth of nanowire superlattice structures for nanoscale photonics and electronics

Mark S. Gudiksen, Lincoln J. Lauhon, Jianfang Wang, David C. Smith and Charles M. Lieber ()
Additional contact information
Mark S. Gudiksen: Harvard University
Lincoln J. Lauhon: Harvard University
Jianfang Wang: Harvard University
David C. Smith: Harvard University
Charles M. Lieber: Harvard University

Nature, 2002, vol. 415, issue 6872, 617-620

Abstract: Abstract The assembly of semiconductor nanowires and carbon nanotubes into nanoscale devices and circuits could enable diverse applications in nanoelectronics and photonics1. Individual semiconducting nanowires have already been configured as field-effect transistors2, photodetectors3 and bio/chemical sensors4. More sophisticated light-emitting diodes5 (LEDs) and complementary and diode logic6,7,8 devices have been realized using both n- and p-type semiconducting nanowires or nanotubes. The n- and p-type materials have been incorporated in these latter devices either by crossing p- and n-type nanowires2,5,6,9 or by lithographically defining distinct p- and n-type regions in nanotubes8,10, although both strategies limit device complexity. In the planar semiconductor industry, intricate n- and p-type and more generally compositionally modulated (that is, superlattice) structures are used to enable versatile electronic and photonic functions. Here we demonstrate the synthesis of semiconductor nanowire superlattices from group III–V and group IV materials. (The superlattices are created within the nanowires by repeated modulation of the vapour-phase semiconductor reactants during growth of the wires.) Compositionally modulated superlattices consisting of 2 to 21 layers of GaAs and GaP have been prepared. Furthermore, n-Si/p-Si and n-InP/p-InP modulation doped nanowires have been synthesized. Single-nanowire photoluminescence, electrical transport and electroluminescence measurements show the unique photonic and electronic properties of these nanowire superlattices, and suggest potential applications ranging from nano-barcodes to polarized nanoscale LEDs.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/415617a Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:415:y:2002:i:6872:d:10.1038_415617a

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/415617a

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:415:y:2002:i:6872:d:10.1038_415617a