Monoclonal mice generated by nuclear transfer from mature B and T donor cells
Konrad Hochedlinger and
Rudolf Jaenisch ()
Additional contact information
Konrad Hochedlinger: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology
Rudolf Jaenisch: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology
Nature, 2002, vol. 415, issue 6875, 1035-1038
Abstract:
Abstract Cloning from somatic cells is inefficient, with most clones dying during gestation1,2. Cloning from embryonic stem (ES) cells is much more effective, suggesting that the nucleus of an embryonic cell is easier to reprogram3,4,5,6,7. It is thus possible that most surviving clones are, in fact, derived from the nuclei of rare somatic stem cells present in adult tissues, rather than from the nuclei of differentiated cells, as has been assumed1,8,9. Here we report the generation of monoclonal mice by nuclear transfer from mature lymphocytes. In a modified two-step cloning procedure, we established ES cells from cloned blastocysts and injected them into tetraploid blastocysts to generate mice. In this approach, the embryo is derived from the ES cells and the extra-embryonic tissues from the tetraploid host6. Animals cloned from a B-cell nucleus were viable and carried fully rearranged immunoglobulin alleles in all tissues. Similarly, a mouse cloned from a T-cell nucleus carried rearranged T-cell-receptor genes in all tissues. This is an unequivocal demonstration that a terminally differentiated cell can be reprogrammed to produce an adult cloned animal.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature718 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:415:y:2002:i:6875:d:10.1038_nature718
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature718
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().