Glacial–interglacial stability of ocean pH inferred from foraminifer dissolution rates
David M. Anderson () and
David Archer
Additional contact information
David M. Anderson: NOAA Paleoclimatology Program and University of Colorado
David Archer: University of Chicago
Nature, 2002, vol. 416, issue 6876, 70-73
Abstract:
Abstract The pH of the ocean is controlled by the chemistry of calcium carbonate. This system in turn plays a large role in regulating the CO2 concentration of the atmosphere on timescales of thousands of years and longer. Reconstructions of ocean pH and carbonate-ion concentration are therefore needed to understand the ocean's role in the global carbon cycle. During the Last Glacial Maximum (LGM), the pH of the whole ocean is thought to have been significantly more basic1, as inferred from the isotopic composition of boron incorporated into calcium carbonate shells, which would partially explain the lower atmospheric CO2 concentration at that time. Here we reconstruct carbonate-ion concentration—and hence pH—of the glacial oceans, using the extent of calcium carbonate dissolution observed in foraminifer faunal assemblages as compiled in the extensive global CLIMAP data set2. We observe decreased carbonate-ion concentrations in the glacial Atlantic Ocean, by roughly 20 µmol kg-1, while little change occurred in the Indian and Pacific oceans relative to today. In the Pacific Ocean, a small (5 µmol kg-1) increase occurred below 3,000 m. This rearrangement of ocean pH may be due to changing ocean circulation from glacial to present times, but overall we see no evidence for a shift in the whole-ocean pH as previously inferred from boron isotopes1.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/416070a Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:416:y:2002:i:6876:d:10.1038_416070a
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/416070a
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().