A topographically forced asymmetry in the martian circulation and climate
Mark I. Richardson () and
R. John Wilson
Additional contact information
Mark I. Richardson: California Institute of Technology, MC 150-21
R. John Wilson: Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, PO Box 308
Nature, 2002, vol. 416, issue 6878, 298-301
Abstract:
Abstract Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity1. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary2,3,4,5, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice3,5,6. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180°. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north–south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere7,8,9,10,11. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/416298a Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:416:y:2002:i:6878:d:10.1038_416298a
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/416298a
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().