Genetic cost of reproductive assurance in a self-fertilizing plant
Christopher R. Herlihy and
Christopher G. Eckert
Additional contact information
Christopher R. Herlihy: Queen's University
Christopher G. Eckert: Queen's University
Nature, 2002, vol. 416, issue 6878, 320-323
Abstract:
Abstract The transition from outcrossing to self-fertilization is one of the most common evolutionary trends in plants1. Reproductive assurance, where self-fertilization ensures seed production when pollinators and/or potential mates are scarce, is the most long-standing and most widely accepted explanation for the evolution of selfing2,3,4,5,6,7,8, but there have been few experimental tests of this hypothesis. Moreover, many apparently adaptive floral mechanisms that ensure the autonomous production of selfed seed might use ovules that would have otherwise been outcrossed. This seed discounting is costly if selfed offspring are less viable than their outcrossed counterparts, as often happens. The fertility benefit of reproductive assurance has never been examined in the light of seed discounting. Here we combine experimental measures of reproductive assurance with marker-gene estimates of self-fertilization, seed discounting and inbreeding depression to show that, during 2 years in 10 Ontario populations of Aquilegia canadensis (Ranunculaceae), reproductive assurance through self-fertilization increases seed production, but this benefit is greatly outweighed by severe seed discounting and inbreeding depression.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/416320a Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:416:y:2002:i:6878:d:10.1038_416320a
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/416320a
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().