Distribution of breaking waves at the ocean surface
W. Kendall Melville () and
Peter Matusov
Additional contact information
W. Kendall Melville: University of California, San Diego
Peter Matusov: University of California, San Diego
Nature, 2002, vol. 417, issue 6884, 58-63
Abstract:
Abstract Surface waves play an important role in the exchange of mass, momentum and energy between the atmosphere and the ocean. The development of the wave field depends on wind, wave–wave and wave–current interactions and wave dissipation owing to breaking, which is accompanied by momentum fluxes from waves to currents. Wave breaking supports air–sea fluxes of heat and gas1,2, which have a profound effect on weather and climate. But wave breaking is poorly quantified and understood. Here we present measurements of wave breaking, using aerial imaging and analysis, and provide a statistical description of related sea-surface processes. We find that the distribution of the length of breaking fronts per unit area of sea surface is proportional to the cube of the wind speed and that, within the measured range of the speed of the wave fronts, the length of breaking fronts per unit area is an exponential function of the speed of the front. We also find that the fraction of the ocean surface mixed by breaking waves, which is important for air–sea exchange, is dominated by wave breaking at low velocities and short wavelengths.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/417058a Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:417:y:2002:i:6884:d:10.1038_417058a
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/417058a
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().