Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis
Maureen H. Conte () and
John C. Weber
Additional contact information
Maureen H. Conte: Woods Hole Oceanographic Institution
John C. Weber: Woods Hole Oceanographic Institution
Nature, 2002, vol. 417, issue 6889, 639-641
Abstract:
Abstract Carbon uptake by the oceans and by the terrestrial biosphere can be partitioned using changes in the 12C/13C isotopic ratio (δ13C) of atmospheric carbon dioxide1,2,3,4, because terrestrial photosynthesis strongly discriminates against 13CO2, whereas ocean uptake does not. This approach depends on accurate estimates of the carbon isotopic discrimination of terrestrial photosynthesis (Δ; ref. 5) at large regional scales6, yet terrestrial ecosystem heterogeneity7 makes such estimates problematic. Here we show that ablated plant wax compounds in continental air masses can be used to estimate Δ over large spatial scales and at less than monthly temporal resolution. We measured plant waxes in continental air masses advected to Bermuda, which are mainly of North American origin, and used the wax isotopic composition to estimate Δ simply. Our estimates indicate a large (5–6‰) seasonal variation in Δ of the temperate North American biosphere, with maximum discrimination occurring in late spring, coincident with the onset of production. We suggest that the observed seasonality arises from several factors, including seasonal shifts in the proportions of production by C3 and C4 plants, and environmentally controlled adjustments in the photosynthetic discrimination of C3-plant-dominated ecosystems.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature00777 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:417:y:2002:i:6889:d:10.1038_nature00777
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature00777
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().