EconPapers    
Economics at your fingertips  
 

Dynamic interactions of cyclic AMP transients and spontaneous Ca2+ spikes

Yuliya V. Gorbunova and Nicholas C. Spitzer ()
Additional contact information
Yuliya V. Gorbunova: University of California
Nicholas C. Spitzer: Neurobiology Section, University of California

Nature, 2002, vol. 418, issue 6893, 93-96

Abstract: Abstract Transient increases of intracellular Ca2+ drive many cellular processes, ranging from membrane channel kinetics to transcriptional regulation1,2,3,4,5, and links of Ca2+ to other second messengers should activate signalling networks6,7,8,9,10,11. However, real-time kinetic interactions have been difficult to investigate. Here we report observations of spontaneous increases in concentration of cyclic AMP (cAMP) in embryonic spinal neurons, and their dynamic interactions with Ca2+ oscillations. Blocking the production of these cAMP transients decreases the intrinsic frequency of spontaneous Ca2+ spikes, whereas inducing cAMP increases causes spike frequency to increase. Transients of cAMP in turn are absent when Ca2+ spikes are blocked, and are generated only in response to specific patterns of stimulated spikes that mimic endogenous Ca2+ kinetics. We present a mathematical model of Ca2+–cAMP reciprocity that generates the slow cAMP oscillations and reproduces the dynamics of Ca2+–cAMP interactions observed experimentally. The model predicts that this module of coupled second messengers is tuned to optimize production of cAMP transients, and that simultaneous stimulation of Ca2+ and cAMP systems produces distinct temporal patterns of oscillations of both messengers. Our findings may prove useful in the investigation of the regulation of gene expression by second-messenger transients.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/nature00835 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:418:y:2002:i:6893:d:10.1038_nature00835

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature00835

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:418:y:2002:i:6893:d:10.1038_nature00835