EconPapers    
Economics at your fingertips  
 

Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast

Zu-Wen Sun and C. David Allis ()
Additional contact information
Zu-Wen Sun: University of Virginia Health System
C. David Allis: University of Virginia Health System

Nature, 2002, vol. 418, issue 6893, 104-108

Abstract: Abstract In eukaryotes, the DNA of the genome is packaged with histone proteins to form nucleosomal filaments, which are, in turn, folded into a series of less well understood chromatin structures1. Post-translational modifications of histone tail domains modulate chromatin structure and gene expression2,3,4. Of these, histone ubiquitination is poorly understood. Here we show that the ubiquitin-conjugating enzyme Rad6 (Ubc2) mediates methylation of histone H3 at lysine 4 (Lys 4) through ubiquitination of H2B at Lys 123 in yeast (Saccharomyces cerevisiae). Moreover, H3 (Lys 4) methylation is abolished in the H2B-K123R mutant, whereas H3-K4R retains H2B (Lys 123) ubiquitination. These data indicate a unidirectional regulatory pathway in which ubiquitination of H2B (Lys 123) is a prerequisite for H3 (Lys 4) methylation. We also show that an H2B-K123R mutation perturbs silencing at the telomere, providing functional links between Rad6-mediated H2B (Lys 123) ubiquitination, Set1-mediated H3 (Lys 4) methylation, and transcriptional silencing. Thus, these data reveal a pathway leading to gene regulation through concerted histone modifications on distinct histone tails. We refer to this as ‘trans-tail’ regulation of histone modification, a stated prediction of the histone code hypothesis5,6.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/nature00883 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:418:y:2002:i:6893:d:10.1038_nature00883

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature00883

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:418:y:2002:i:6893:d:10.1038_nature00883