EconPapers    
Economics at your fingertips  
 

Scale dependence of bubble creation mechanisms in breaking waves

Grant B. Deane () and M. Dale Stokes
Additional contact information
Grant B. Deane: University of California at , La Jolla
M. Dale Stokes: University of California at , La Jolla

Nature, 2002, vol. 418, issue 6900, 839-844

Abstract: Abstract Breaking ocean waves entrain air bubbles that enhance air–sea gas flux, produce aerosols, generate ambient noise and scavenge biological surfactants. The size distribution of the entrained bubbles is the most important factor in controlling these processes, but little is known about bubble properties and formation mechanisms inside whitecaps. We have measured bubble size distributions inside breaking waves in the laboratory and in the open ocean, and provide a quantitative description of bubble formation mechanisms in the laboratory. We find two distinct mechanisms controlling the size distribution, depending on bubble size. For bubbles larger than about 1 mm, turbulent fragmentation determines bubble size distribution, resulting in a bubble density proportional to the bubble radius to the power of -10/3. Smaller bubbles are created by jet and drop impact on the wave face, with a -3/2 power-law scaling. The length scale separating these processes is the scale where turbulent fragmentation ceases, also known as the Hinze scale. Our results will have important implications for the study of air–sea gas transfer.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature00967 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:418:y:2002:i:6900:d:10.1038_nature00967

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature00967

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:418:y:2002:i:6900:d:10.1038_nature00967