A bacteriolytic agent that detects and kills Bacillus anthracis
Raymond Schuch,
Daniel Nelson and
Vincent A. Fischetti ()
Additional contact information
Raymond Schuch: The Rockefeller University
Daniel Nelson: The Rockefeller University
Vincent A. Fischetti: The Rockefeller University
Nature, 2002, vol. 418, issue 6900, 884-889
Abstract:
Abstract The dormant and durable spore form of Bacillus anthracis is an ideal biological weapon of mass destruction1,2. Once inhaled, spores are transported by alveolar macrophages to lymph nodes surrounding the lungs, where they germinate; subsequent vegetative expansion causes an overwhelming flood of bacteria and toxins into the blood, killing up to 99% of untreated victims. Natural and genetically engineered antibiotic-resistant bacilli amplify the threat of spores being used as weapons, and heighten the need for improved treatments and spore-detection methods after an intentional release. We exploited the inherent binding specificity and lytic action of bacteriophage enzymes called lysins for the rapid detection and killing of B. anthracis. Here we show that the PlyG lysin, isolated from the γ phage of B. anthracis, specifically kills B. anthracis isolates and other members of the B. anthracis ‘cluster’ of bacilli in vitro and in vivo. Both vegetative cells and germinating spores are susceptible. The lytic specificity of PlyG was also exploited as part of a rapid method for the identification of B. anthracis. We conclude that PlyG is a tool for the treatment and detection of B. anthracis.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01026 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:418:y:2002:i:6900:d:10.1038_nature01026
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01026
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().