Mechanical milling assisted by electrical discharge
A. Calka () and
D. Wexler
Additional contact information
A. Calka: University of Wollongong
D. Wexler: University of Wollongong
Nature, 2002, vol. 419, issue 6903, 147-151
Abstract:
Abstract Mechanical milling is an effective technique for the preparation of fine metallic and ceramic powders and can also be used to drive a wide range of chemical reactions. Milling devices include planetary machines, attritors and vibrational mills; products include amorphous, nanocrystalline and quasicrystalline materials, supersaturated solid solutions, reduced minerals, high-surface-area catalysts and reactive chemicals1,2,3. During milling, solid–solid, solid–liquid and solid–gas reactions are initiated through repeated deformation and fracture of powder particles. A separate materials synthesis and processing technique involves reacting a material in a gas atmosphere under an electrical discharge4,5,6,7. Here we show that the application of low-current, high-voltage electrical impulses during milling can result in both faster reactions and new synthesis and processing routes. We demonstrate the effects of glow (cold) and spark (hot) discharge milling on particle fracture for brittle, low-conductivity materials and ductile metals. Glow discharge milling was found to promote solid–gas reactions whereas spark discharge milling promotes fast fracturing, recrystallization, mineral reduction and solid–solid reactions.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature00985 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:419:y:2002:i:6903:d:10.1038_nature00985
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature00985
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().