EconPapers    
Economics at your fingertips  
 

Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett and K. Dholakia ()
Additional contact information
V. Garcés-Chávez: University of St Andrews
D. McGloin: University of St Andrews
H. Melville: University of St Andrews
W. Sibbett: University of St Andrews
K. Dholakia: University of St Andrews

Nature, 2002, vol. 419, issue 6903, 145-147

Abstract: Abstract Optical tweezers1 are commonly used for manipulating microscopic particles, with applications in cell manipulation2, colloid research3,4,5, manipulation of micromachines6 and studies of the properties of light beams7. Such tweezers work by the transfer of momentum from a tightly focused laser to the particle, which refracts and scatters the light and distorts the profile of the beam. The forces produced by this process cause the particle to be trapped near the beam focus. Conventional tweezers use gaussian light beams, which cannot trap particles in multiple locations more than a few micrometres apart in the axial direction, because of beam distortion by the particle and subsequent strong divergence from the focal plane. Bessel beams8,9, however, do not diverge and, furthermore, if part of the beam is obstructed or distorted the beam reconstructs itself after a characteristic propagation distance10. Here we show how this reconstructive property may be utilized within optical tweezers to trap particles in multiple, spatially separated sample cells with a single beam. Owing to the diffractionless nature of the Bessel beam, secondary trapped particles can reside in a second sample cell far removed (∼3 mm) from the first cell. Such tweezers could be used for the simultaneous study of identically prepared ensembles of colloids and biological matter, and potentially offer enhanced control of ‘lab-on-a-chip’ and optically driven microstructures.

Date: 2002
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature01007 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:419:y:2002:i:6903:d:10.1038_nature01007

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature01007

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:419:y:2002:i:6903:d:10.1038_nature01007