EconPapers    
Economics at your fingertips  
 

A cryptic protease couples deubiquitination and degradation by the proteasome

Tingting Yao and Robert E. Cohen ()
Additional contact information
Tingting Yao: University of Iowa
Robert E. Cohen: University of Iowa

Nature, 2002, vol. 419, issue 6905, 403-407

Abstract: Abstract The 26S proteasome is responsible for most intracellular proteolysis in eukaryotes1,2. Efficient substrate recognition relies on conjugation of substrates with multiple ubiquitin molecules and recognition of the polyubiquitin moiety by the 19S regulatory complex—a multisubunit assembly that is bound to either end of the cylindrical 20S proteasome core. Only unfolded proteins can pass through narrow axial channels into the central proteolytic chamber of the 20S core, so the attached polyubiquitin chain must be released to allow full translocation of the substrate polypeptide. Whereas unfolding is rate-limiting for the degradation of some substrates and appears to involve chaperone-like activities associated with the proteasome3,4,5, the importance and mechanism of degradation-associated deubiquitination has remained unclear. Here we report that the POH1 (also known as Rpn11 in yeast) subunit of the 19S complex is responsible for substrate deubiquitination during proteasomal degradation. The inability to remove ubiquitin can be rate-limiting for degradation in vitro and is lethal to yeast. Unlike all other known deubiquitinating enzymes (DUBs) that are cysteine proteases6,7, POH1 appears to be a Zn2+-dependent protease.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature01071 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:419:y:2002:i:6905:d:10.1038_nature01071

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature01071

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:419:y:2002:i:6905:d:10.1038_nature01071