EconPapers    
Economics at your fingertips  
 

Epitaxial core–shell and core–multishell nanowire heterostructures

Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang and Charles M. Lieber ()
Additional contact information
Lincoln J. Lauhon: Harvard University
Mark S. Gudiksen: Harvard University
Deli Wang: Harvard University
Charles M. Lieber: Harvard University

Nature, 2002, vol. 420, issue 6911, 57-61

Abstract: Abstract Semiconductor heterostructures with modulated composition and/or doping enable passivation of interfaces and the generation of devices with diverse functions1. In this regard, the control of interfaces in nanoscale building blocks with high surface area will be increasingly important in the assembly of electronic and photonic devices2,3,4,5,6,7,8,9,10. Core–shell heterostructures formed by the growth of crystalline overlayers on nanocrystals offer enhanced emission efficiency7, important for various applications8,9,10. Axial heterostructures have also been formed by a one-dimensional modulation of nanowire composition11,12,13 and doping11. However, modulation of the radial composition and doping in nanowire structures has received much less attention than planar1 and nanocrystal7 systems. Here we synthesize silicon and germanium core–shell and multishell nanowire heterostructures using a chemical vapour deposition method applicable to a variety of nanoscale materials14. Our investigations of the growth of boron-doped silicon shells on intrinsic silicon and silicon–silicon oxide core–shell nanowires indicate that homoepitaxy can be achieved at relatively low temperatures on clean silicon. We also demonstrate the possibility of heteroepitaxial growth of crystalline germanium–silicon and silicon–germanium core–shell structures, in which band-offsets drive hole injection into either germanium core or shell regions. Our synthesis of core–multishell structures, including a high-performance coaxially gated field-effect transistor, indicates the general potential of radial heterostructure growth for the development of nanowire-based devices.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/nature01141 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:420:y:2002:i:6911:d:10.1038_nature01141

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature01141

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:420:y:2002:i:6911:d:10.1038_nature01141