Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite
J. M. D. Coey (),
M. Venkatesan,
C. B. Fitzgerald,
A. P. Douvalis and
I. S. Sanders
Additional contact information
J. M. D. Coey: Trinity College
M. Venkatesan: Trinity College
C. B. Fitzgerald: Trinity College
A. P. Douvalis: Trinity College
I. S. Sanders: Trinity College
Nature, 2002, vol. 420, issue 6912, 156-159
Abstract:
Abstract There are recent reports of weak ferromagnetism in graphite1,2 and synthetic carbon materials3 such as rhombohedral C60 (ref. 4), as well as a theoretical prediction of a ferromagnetic instability in graphene sheets5. With very small ferromagnetic signals, it is difficult to be certain that the origin is intrinsic, rather than due to minute concentrations of iron-rich impurities. Here we take a different experimental approach to study ferromagnetism in graphitic materials, by making use of meteoritic graphite, which is strongly ferromagnetic at room temperature. We examined ten samples of extraterrestrial graphite from a nodule in the Canyon Diablo meteorite. Graphite is the major phase in every sample, but there are minor amounts of magnetite, kamacite, akaganéite, and other phases. By analysing the phase composition of a series of samples, we find that these iron-rich minerals can only account for about two-thirds of the observed magnetization. The remainder is somehow associated with graphite, corresponding to an average magnetization of 0.05 Bohr magnetons per carbon atom. The magnetic ordering temperature is near 570 K. We suggest that the ferromagnetism is a magnetic proximity effect induced at the interface with magnetite or kamacite inclusions.
Date: 2002
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01100 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:420:y:2002:i:6912:d:10.1038_nature01100
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01100
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().