Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer
Stephan Gulde,
Mark Riebe,
Gavin P. T. Lancaster,
Christoph Becher,
Jürgen Eschner,
Hartmut Häffner,
Ferdinand Schmidt-Kaler (),
Isaac L. Chuang and
Rainer Blatt
Additional contact information
Stephan Gulde: Institut für Experimentalphysik, Universität Innsbruck
Mark Riebe: Institut für Experimentalphysik, Universität Innsbruck
Gavin P. T. Lancaster: Institut für Experimentalphysik, Universität Innsbruck
Christoph Becher: Institut für Experimentalphysik, Universität Innsbruck
Jürgen Eschner: Institut für Experimentalphysik, Universität Innsbruck
Hartmut Häffner: Institut für Experimentalphysik, Universität Innsbruck
Ferdinand Schmidt-Kaler: Institut für Experimentalphysik, Universität Innsbruck
Isaac L. Chuang: Institut für Experimentalphysik, Universität Innsbruck
Rainer Blatt: Institut für Experimentalphysik, Universität Innsbruck
Nature, 2003, vol. 421, issue 6918, 48-50
Abstract:
Abstract Determining classically whether a coin is fair (head on one side, tail on the other) or fake (heads or tails on both sides) requires an examination of each side. However, the analogous quantum procedure (the Deutsch–Jozsa algorithm1,2) requires just one examination step. The Deutsch–Jozsa algorithm has been realized experimentally using bulk nuclear magnetic resonance techniques3,4, employing nuclear spins as quantum bits (qubits). In contrast, the ion trap processor utilises3 motional and electronic quantum states of individual atoms as qubits, and in principle is easier to scale to many qubits. Experimental advances in the latter area include the realization of a two-qubit quantum gate6, the entanglement of four ions7, quantum state engineering8 and entanglement-enhanced phase estimation9. Here we exploit techniques10,11 developed for nuclear magnetic resonance to implement the Deutsch–Jozsa algorithm on an ion-trap quantum processor, using as qubits the electronic and motional states of a single calcium ion. Our ion-based implementation of a full quantum algorithm serves to demonstrate experimental procedures with the quality and precision required for complex computations, confirming the potential of trapped ions for quantum computation.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01336 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:421:y:2003:i:6918:d:10.1038_nature01336
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01336
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().