EconPapers    
Economics at your fingertips  
 

Evolution of the Archaean crust by delamination and shallow subduction

Stephen F. Foley (), Stephan Buhre and Dorrit E. Jacob
Additional contact information
Stephen F. Foley: Institut für Geologische Wissenschaften, Universität Greifswald
Stephan Buhre: Institut für Mineralogie, Universität Frankfurt
Dorrit E. Jacob: Institut für Geologische Wissenschaften, Universität Greifswald

Nature, 2003, vol. 421, issue 6920, 249-252

Abstract: Abstract The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges1. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts2,3. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite4—formed only in the upper regions of oceanic crust—which is thought to have first occurred on a large scale during subduction in the late Archaean5. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time5,6.

Date: 2003
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature01319 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:421:y:2003:i:6920:d:10.1038_nature01319

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature01319

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:421:y:2003:i:6920:d:10.1038_nature01319