Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders
Ivelisse Sánchez,
Christian Mahlke and
Junying Yuan ()
Additional contact information
Ivelisse Sánchez: Harvard Medical School
Christian Mahlke: Harvard Medical School
Junying Yuan: Harvard Medical School
Nature, 2003, vol. 421, issue 6921, 373-379
Abstract:
Abstract The expansion of a CAG repeat coding for polyglutamine in otherwise unrelated gene products is central to eight neurodegenerative disorders including Huntington's disease1. It has been well documented that expanded polyglutamine fragments, cleaved from their respective full-length proteins, form microscopically visible aggregates in affected individuals and in transgenic mice2,3,4,5,6,7. The contribution of polyglutamine oligomers to neurodegeneration, however, is controversial. The azo-dye Congo red binds preferentially to β-sheets containing amyloid fibrils8,9 and can specifically inhibit oligomerization10 and disrupt preformed oligomers. Here we show that inhibition of polyglutamine oligomerization by Congo red prevents ATP depletion and caspase activation, preserves normal cellular protein synthesis and degradation functions, and promotes the clearance of expanded polyglutamine repeats in vivo and in vitro. Infusion of Congo red into a transgenic mouse model of Huntington's disease, well after the onset of symptoms, promotes the clearance of expanded repeats in vivo and exerts marked protective effects on survival, weight loss and motor function. We conclude that oligomerization is a crucial determinant in the biochemical properties of expanded polyglutamine that are central to their chronic cytotoxicity.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01301 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:421:y:2003:i:6921:d:10.1038_nature01301
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01301
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().