Attosecond control of electronic processes by intense light fields
A. Baltuška,
Th. Udem,
M. Uiberacker,
M. Hentschel,
E. Goulielmakis,
Ch. Gohle,
R. Holzwarth,
V. S. Yakovlev,
A. Scrinzi,
T. W. Hänsch and
F. Krausz ()
Additional contact information
A. Baltuška: Institut für Photonik, Technische Universität Wien
Th. Udem: Max-Planck-Institut für Quantenoptik
M. Uiberacker: Institut für Photonik, Technische Universität Wien
M. Hentschel: Institut für Photonik, Technische Universität Wien
E. Goulielmakis: Institut für Photonik, Technische Universität Wien
Ch. Gohle: Max-Planck-Institut für Quantenoptik
R. Holzwarth: Max-Planck-Institut für Quantenoptik
V. S. Yakovlev: Institut für Photonik, Technische Universität Wien
A. Scrinzi: Institut für Photonik, Technische Universität Wien
T. W. Hänsch: Max-Planck-Institut für Quantenoptik
F. Krausz: Institut für Photonik, Technische Universität Wien
Nature, 2003, vol. 421, issue 6923, 611-615
Abstract:
Abstract The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10-15 s) timescale1. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak2. This so-called carrier-envelope phase has been predicted3,4,5,6,7,8,9 and observed10 to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 × 10-18 s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents—these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01414 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:421:y:2003:i:6923:d:10.1038_nature01414
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01414
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().