EconPapers    
Economics at your fingertips  
 

A stable silicon-based allene analogue with a formally sp-hybridized silicon atom

S. Ishida, T. Iwamoto, C. Kabuto and M. Kira ()
Additional contact information
S. Ishida: Tohoku University
T. Iwamoto: Tohoku University
C. Kabuto: Tohoku University
M. Kira: Tohoku University

Nature, 2003, vol. 421, issue 6924, 725-727

Abstract: Abstract Carbon chemistry exhibits a rich variety in bonding patterns, with homo- or heteronuclear multiple bonds involving sp-hybridized carbon atoms as found in molecules such as acetylenes, nitriles, allenes and carbon dioxide. Carbon's heavier homologues in group 14 of the periodic table—including silicon, germanium and tin—were long thought incapable of forming multiple bonds because of the less effective pπ–pπ orbital overlap involved in the multiple bonds. However, bulky substituents can protect unsaturated bonds and stabilize compounds with formally sp-hybridized heavy group-14 atoms1,2: stable germanium2, tin3 and lead4 analogues of acetylene derivatives and a marginally stable tristannaallene5 have now been reported. However, no stable silicon compounds with formal sp-silicon atoms have been isolated. Evidence for the existence of a persistent disilaacetylene6 and trapping7 of transient 2-silaallenes and other X = Si = X′ type compounds (X, X′ = O, CR2, NR, and so on) are also known, but stable silicon compounds with formally sp-hybridized silicon atoms have not yet been isolated. Here we report the synthesis of a thermally stable, crystalline trisilaallene derivative containing a formally sp-hybridized silicon atom. We find that, in contrast to linear carbon allenes, the trisilaallene is significantly bent. The central silicon in the molecule is dynamically disordered, which we ascribe to ready rotation of the central silicon atom around the molecular axis.

Date: 2003
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature01380 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:421:y:2003:i:6924:d:10.1038_nature01380

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature01380

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:421:y:2003:i:6924:d:10.1038_nature01380