EconPapers    
Economics at your fingertips  
 

Auxin promotes Arabidopsis root growth by modulating gibberellin response

Xiangdong Fu and Nicholas P. Harberd ()
Additional contact information
Xiangdong Fu: John Innes Centre
Nicholas P. Harberd: John Innes Centre

Nature, 2003, vol. 421, issue 6924, 740-743

Abstract: Abstract The growth of plant organs is influenced by a stream of the phytohormone auxin that flows from the shoot apex to the tip of the root1. However, until now it has not been known how auxin regulates the cell proliferation and enlargement that characterizes organ growth. Here we show that auxin controls the growth of roots by modulating cellular responses to the phytohormone gibberellin (GA). GA promotes the growth of plants by opposing the effects of nuclear DELLA protein growth repressors2,3,4,5,6,7,8, one of which is Arabidopsis RGA (for repressor of gal-3)9,10. GA opposes the action of several DELLA proteins by destabilizing them, reducing both the concentration of detectable DELLA proteins and their growth-restraining effects9,10,11,12,13,14. We also show that auxin is necessary for GA-mediated control of root growth, and that attenuation of auxin transport or signalling delays the GA-induced disappearance of RGA from root cell nuclei. Our observations indicate that the shoot apex exerts long-distance control on the growth of plant organs through the effect of auxin on GA-mediated DELLA protein destabilization.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature01387 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:421:y:2003:i:6924:d:10.1038_nature01387

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature01387

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:421:y:2003:i:6924:d:10.1038_nature01387