MDC1 is a mediator of the mammalian DNA damage checkpoint
Grant S. Stewart,
Bin Wang,
Colin R. Bignell,
A. Malcolm R. Taylor and
Stephen J. Elledge ()
Additional contact information
Grant S. Stewart: Baylor College of Medicine
Bin Wang: Baylor College of Medicine
Colin R. Bignell: University of Birmingham
A. Malcolm R. Taylor: University of Birmingham
Stephen J. Elledge: Baylor College of Medicine
Nature, 2003, vol. 421, issue 6926, 961-966
Abstract:
Abstract To counteract the continuous exposure of cells to agents that damage DNA, cells have evolved complex regulatory networks called checkpoints to sense DNA damage and coordinate DNA replication, cell-cycle arrest and DNA repair1. It has recently been shown that the histone H2A variant H2AX specifically controls the recruitment of DNA repair proteins to the sites of DNA damage2,3,4. Here we identify a novel BRCA1 carboxy-terminal (BRCT) and forkhead-associated (FHA) domain-containing protein, MDC1 (mediator of DNA damage checkpoint protein 1), which works with H2AX to promote recruitment of repair proteins to the sites of DNA breaks and which, in addition, controls damage-induced cell-cycle arrest checkpoints. MDC1 forms foci that co-localize extensively with γ-H2AX foci within minutes after exposure to ionizing radiation. H2AX is required for MDC1 foci formation, and MDC1 forms complexes with phosphorylated H2AX. Furthermore, this interaction is phosphorylation dependent as peptides containing the phosphorylated site on H2AX bind MDC1 in a phosphorylation-dependent manner. We have shown by using small interfering RNA (siRNA) that cells lacking MDC1 are sensitive to ionizing radiation, and that MDC1 controls the formation of damage-induced 53BP1, BRCA1 and MRN foci, in part by promoting efficient H2AX phosphorylation. In addition, cells lacking MDC1 also fail to activate the intra-S phase and G2/M phase cell-cycle checkpoints properly after exposure to ionizing radiation, which was associated with an inability to regulate Chk1 properly. These results highlight a crucial role for MDC1 in mediating transduction of the DNA damage signal.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/nature01446 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:421:y:2003:i:6926:d:10.1038_nature01446
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01446
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().