Global anisotropy and the thickness of continents
Yuancheng Gung,
Mark Panning and
Barbara Romanowicz ()
Additional contact information
Yuancheng Gung: Berkeley Seismological Laboratory and Department of Earth and Planetary Science
Mark Panning: Berkeley Seismological Laboratory and Department of Earth and Planetary Science
Barbara Romanowicz: Berkeley Seismological Laboratory and Department of Earth and Planetary Science
Nature, 2003, vol. 422, issue 6933, 707-711
Abstract:
Abstract For decades there has been a vigorous debate about the depth extent of continental roots1,2. The analysis of heat-flow3, mantle-xenolith4 and electrical-conductivity5 data all indicate that the coherent, conductive part of continental roots (the ‘tectosphere’) is at most 200–250 km thick. Some global seismic tomographic models agree with this estimate, but others suggest that a much thicker zone of high velocities lies beneath continental shields6,7,8,9, reaching a depth of at least 400 km. Here we show that this disagreement can be reconciled by taking into account seismic anisotropy. We show that significant radial anisotropy, with horizontally polarized shear waves travelling faster than those that are vertically polarized, is present under most cratons in the depth range 250–400 km—similar to that found under ocean basins9,10 at shallower depths of 80–250 km. We propose that, in both cases, the anisotropy is related to shear in a low-viscosity asthenospheric channel, located at different depths under continents and oceans. The seismically defined ‘tectosphere’ is then at most 200–250 km thick under old continents. The ‘Lehmann discontinuity’, observed mostly under continents at about 200–250 km, and the ‘Gutenberg discontinuity’, observed under oceans at depths of about 60–80 km, may both be associated with the bottom of the lithosphere, marking a transition to flow-induced asthenospheric anisotropy.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01559 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:422:y:2003:i:6933:d:10.1038_nature01559
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01559
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().