EconPapers    
Economics at your fingertips  
 

Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots

F. X. Redl, K.-S. Cho, C. B. Murray and S. O'Brien ()
Additional contact information
F. X. Redl: IBM, T. J. Watson Research Center, Nanoscale Materials and Devices
K.-S. Cho: IBM, T. J. Watson Research Center, Nanoscale Materials and Devices
C. B. Murray: IBM, T. J. Watson Research Center, Nanoscale Materials and Devices
S. O'Brien: Columbia University

Nature, 2003, vol. 423, issue 6943, 968-971

Abstract: Abstract Recent advances in strategies for synthesizing nanoparticles—such as semiconductor quantum dots1, magnets and noble-metal clusters2—have enabled the precise control of composition, size, shape3, crystal structure4, and surface chemistry. The distinct properties of the resulting nanometre-scale building blocks can be harnessed in assemblies with new collective properties2,5,6, which can be further engineered by controlling interparticle spacing and by material processing. Our study is motivated by the emerging concept of metamaterials7—materials with properties arising from the controlled interaction of the different nanocrystals in an assembly. Previous multi-component nanocrystal assemblies have usually resulted in amorphous or short-range-ordered materials8,9 because of non-directional forces or insufficient mobility during assembly10,11,12,13,14. Here we report the self-assembly of PbSe semiconductor quantum dots and Fe2O3 magnetic nanocrystals into precisely ordered three-dimensional superlattices. The use of specific size ratios directs the assembly of the magnetic and semiconducting nanoparticles into AB13 or AB2 superlattices with potentially tunable optical and magnetic properties. This synthesis concept could ultimately enable the fine-tuning of material responses to magnetic, electrical, optical and mechanical stimuli6.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature01702 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:423:y:2003:i:6943:d:10.1038_nature01702

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature01702

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:423:y:2003:i:6943:d:10.1038_nature01702