Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets
Sven Matthias and
Frank Müller ()
Additional contact information
Sven Matthias: Max Planck Institute of Microstructure Physics
Frank Müller: Max Planck Institute of Microstructure Physics
Nature, 2003, vol. 424, issue 6944, 53-57
Abstract:
Abstract The brownian motion of mesoscopic particles is ubiquitous and usually random. But in systems with periodic asymmetric barriers to movement, directed or ‘rectified’ motion can arise and may even modulate some biological processes1. In man-made devices, brownian ratchets and variants based on optical or quantum effects have been exploited to induce directed motion2,3,4,5,6,7,8,9,10,11,12,13,14, and the dependence of the amplitude of motion on particle size has led to the size-dependent separation of biomolecules6,8,15. Here we demonstrate that the one-dimensional pores of a macroporous silicon membrane16, etched to exhibit a periodic asymmetric variation in pore diameter, can act as massively parallel and multiply stacked brownian ratchets that are potentially suitable for large-scale particle separations. We show that applying a periodic pressure profile with a mean value of zero to a basin separated by such a membrane induces a periodic flow of water and suspended particles through the pores, resulting in a net motion of the particles from one side of the membrane to the other without moving the liquid itself. We find that the experimentally observed pressure dependence of the particle transport, including an inversion of the transport direction, agrees with calculations17,18 of the transport properties in the type of ratchet devices used here.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature01736 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:424:y:2003:i:6944:d:10.1038_nature01736
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01736
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().