Efficient disruption of small asteroids by Earth's atmosphere
P. A. Bland () and
N. A. Artemieva
Additional contact information
P. A. Bland: Imperial College London
N. A. Artemieva: Institute for Dynamics of Geospheres, Russian Academy of Sciences
Nature, 2003, vol. 424, issue 6946, 288-291
Abstract:
Abstract Accurate modelling of the interaction between the atmosphere and an incoming bolide is a complex task, but crucial to determining the fraction of small asteroids that actually hit the Earth's surface. Most semi-analytical approaches have simplified the problem by considering the impactor as a strengthless liquid-like object (‘pancake’ models1,2), but recently a more realistic model has been developed that calculates motion, aerodynamic loading and ablation for each separate particle or fragment in a disrupted impactor3,4. Here we report the results of a large number of simulations in which we use both models to develop a statistical picture of atmosphere–bolide interaction for iron and stony objects with initial diameters up to ∼1 km. We show that the separated-fragments model predicts the total atmospheric disruption of much larger stony bodies than previously thought. In addition, our data set of >1,000 simulated impacts, combined with the known pre-atmospheric flux of asteroids with diameters less than 1 km5,6,7,8,9,10,11,12, elucidates the flux of small bolides at the Earth's surface. We estimate that bodies >220 m in diameter will impact every 170,000 years.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01757 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:424:y:2003:i:6946:d:10.1038_nature01757
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01757
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().