Generation of prion transmission barriers by mutational control of amyloid conformations
Peter Chien,
Angela H. DePace,
Sean R. Collins and
Jonathan S. Weissman ()
Additional contact information
Peter Chien: University of California–San Francisco
Angela H. DePace: University of California–San Francisco
Sean R. Collins: University of California–San Francisco
Jonathan S. Weissman: University of California–San Francisco
Nature, 2003, vol. 424, issue 6951, 948-951
Abstract:
Abstract Self-propagating β-sheet-rich protein aggregates are implicated in a wide range of protein-misfolding phenomena, including amyloid diseases and prion-based inheritance1. Two properties have emerged as common features of amyloids. Amyloid formation is ubiquitous: many unrelated proteins form such aggregates and even a single polypeptide can misfold into multiple forms2,3,4,5,6 — a process that is thought to underlie prion strain variation7. Despite this promiscuity, amyloid propagation can be highly sequence specific: amyloid fibres often fail to catalyse the aggregation of other amyloidogenic proteins8,9. In prions, this specificity leads to barriers that limit transmission between species7,8,10,11,12. Using the yeast prion [PSI+]13, we show in vitro that point mutations in Sup35p, the protein determinant of [PSI+], alter the range of ‘infectious’ conformations, which in turn changes amyloid seeding specificity. We generate a new transmission barrier in vivo by using these mutations to specifically disfavour subsets of prion strains. The ability of mutations to alter the conformations of amyloid states without preventing amyloid formation altogether provides a general mechanism for the generation of prion transmission barriers and may help to explain how mutations alter toxicity in conformational diseases.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01894 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:424:y:2003:i:6951:d:10.1038_nature01894
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01894
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().