Video-speed electronic paper based on electrowetting
Robert A. Hayes () and
B. J. Feenstra ()
Additional contact information
Robert A. Hayes: Philips Research Eindhoven
B. J. Feenstra: Philips Research Eindhoven
Nature, 2003, vol. 425, issue 6956, 383-385
Abstract:
Abstract In recent years, a number of different technologies have been proposed for use in reflective displays1,2,3. One of the most appealing applications of a reflective display is electronic paper, which combines the desirable viewing characteristics of conventional printed paper with the ability to manipulate the displayed information electronically. Electronic paper based on the electrophoretic motion of particles inside small capsules has been demonstrated1 and commercialized; but the response speed of such a system is rather slow, limited by the velocity of the particles. Recently, we have demonstrated that electrowetting is an attractive technology for the rapid manipulation of liquids on a micrometre scale4. Here we show that electrowetting can also be used to form the basis of a reflective display that is significantly faster than electrophoretic displays, so that video content can be displayed. Our display principle utilizes the voltage-controlled movement of a coloured oil film adjacent to a white substrate. The reflectivity and contrast of our system approach those of paper. In addition, we demonstrate a colour concept, which is intrinsically four times brighter than reflective liquid-crystal displays5 and twice as bright as other emerging technologies1,2,3. The principle of microfluidic motion at low voltages is applicable in a wide range of electro-optic devices.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature01988 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:425:y:2003:i:6956:d:10.1038_nature01988
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01988
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().