Temperature-induced valence transition and associated lattice collapse in samarium fulleride
J. Arvanitidis,
Konstantinos Papagelis (),
Serena Margadonna (),
Kosmas Prassides and
Andrew N. Fitch
Additional contact information
J. Arvanitidis: University of Sussex
Konstantinos Papagelis: University of Sussex
Serena Margadonna: University of Cambridge
Kosmas Prassides: University of Sussex
Andrew N. Fitch: European Synchrotron Radiation Facility
Nature, 2003, vol. 425, issue 6958, 599-602
Abstract:
Abstract The different degrees of freedom of a given system are usually independent of each other but can in some materials be strongly coupled, giving rise to phase equilibria sensitively susceptible to external perturbations. Such systems often exhibit unusual physical properties that are difficult to treat theoretically, as exemplified by strongly correlated electron systems such as intermediate-valence rare-earth heavy fermions and Kondo insulators, colossal magnetoresistive manganites and high-transition temperature (high-Tc) copper oxide superconductors. Metal fulleride salts1—metal intercalation compounds of C60—and materials based on rare-earth metals also exhibit strong electronic correlations. Rare-earth fullerides thus constitute a particularly intriguing system—they contain highly correlated cation (rare-earth) and anion (C60) sublattices. Here we show, using high-resolution synchrotron X-ray diffraction and magnetic susceptibility measurements, that cooling the rare-earth fulleride Sm2.75C60 induces an isosymmetric phase transition near 32 K, accompanied by a dramatic isotropic volume increase and a samarium valence transition from (2 + ε) + to nearly 2 + . The negative thermal expansion—heating from 4.2 to 32 K leads to contraction rather than expansion—occurs at a rate about 40 times larger than in ternary metal oxides typically exhibiting such behaviour2. We attribute the large negative thermal expansion, unprecedented in fullerene or other molecular systems, to a quasi-continuous valence transition from Sm2+ towards the smaller Sm(2+ε)+, analogous to the valence or configuration transitions encountered in intermediate-valence Kondo insulators like SmS (ref. 3).
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature01994 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:425:y:2003:i:6958:d:10.1038_nature01994
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature01994
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().