Yip3 catalyses the dissociation of endosomal Rab–GDI complexes
Ulf Sivars,
Dikran Aivazian and
Suzanne R. Pfeffer ()
Additional contact information
Ulf Sivars: Stanford University School of Medicine
Dikran Aivazian: Stanford University School of Medicine
Suzanne R. Pfeffer: Stanford University School of Medicine
Nature, 2003, vol. 425, issue 6960, 856-859
Abstract:
Abstract Human cells contain more than 60 small G proteins of the Rab family, which are localized to the surfaces of distinct membrane compartments and regulate transport vesicle formation, motility, docking and fusion1,2,3. Prenylated Rabs also occur in the cytosol bound to GDI4,5 (guanine nucleotide dissociation inhibitor), which binds to Rabs in their inactive state. Prenyl Rab–GDI complexes contain all of the information necessary to direct Rab delivery onto distinct membrane compartments6,7,8. The late endosomal, prenyl Rab9 binds GDI with very high affinity9, which led us to propose that there might be a ‘GDI-displacement factor’ to catalyse dissociation of Rab–GDI complexes and to enable transfer of Rabs from GDI onto membranes6,10. Indeed, we have previously shown that endosomal membranes contain a proteinaceous factor that can act in this manner10. Here we show that the integral membrane protein, Yip3, acts catalytically to dissociate complexes of endosomal Rabs bound to GDI, and to deliver them onto membranes. We propose that the conserved Yip proteins serve as GDI-displacement factors for the targeting of Rab GTPases in eukaryotic cells.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature02057 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:425:y:2003:i:6960:d:10.1038_nature02057
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02057
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().