The formation of the first low-mass stars from gas with low carbon and oxygen abundances
Volker Bromm () and
Abraham Loeb ()
Additional contact information
Volker Bromm: Harvard University
Abraham Loeb: Harvard University
Nature, 2003, vol. 425, issue 6960, 812-814
Abstract:
Abstract The first stars in the Universe are predicted to have been much more massive than the Sun1,2,3. Gravitational condensation, accompanied by cooling of the primordial gas via molecular hydrogen, yields a minimum fragmentation scale of a few hundred solar masses. Numerical simulations indicate that once a gas clump acquires this mass it undergoes a slow, quasi-hydrostatic contraction without further fragmentation1,2; lower-mass stars cannot form. Here we show that as soon as the primordial gas—left over from the Big Bang—is enriched by elements ejected from supernovae to a carbon or oxygen abundance as small as ∼0.01–0.1 per cent of that found in the Sun, cooling by singly ionized carbon or neutral oxygen can lead to the formation of low-mass stars by allowing cloud fragmentation to smaller clumps. This mechanism naturally accommodates the recent discovery4 of solar-mass stars with unusually low iron abundances (10-5.3 solar) but with relatively high (10-1.3 solar) carbon abundance. The critical abundances that we derive can be used to identify those metal-poor stars in our Galaxy with elemental patterns imprinted by the first supernovae. We also find that the minimum stellar mass at early epochs is partially regulated by the temperature of the cosmic microwave background.
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature02071 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:425:y:2003:i:6960:d:10.1038_nature02071
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02071
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().