DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA
Ming Lei,
Elaine R. Podell,
Peter Baumann and
Thomas R. Cech ()
Additional contact information
Ming Lei: University of Colorado
Elaine R. Podell: University of Colorado
Peter Baumann: Stowers Institute for Medical Research
Thomas R. Cech: University of Colorado
Nature, 2003, vol. 426, issue 6963, 198-203
Abstract:
Abstract Telomeres, specialized protein–DNA complexes that cap the ends of linear chromosomes, are essential for protecting chromosomes from degradation and end-to-end fusions1,2. The Pot1 (protection of telomeres 1) protein is a widely distributed eukaryotic end-capping protein, having been identified in fission yeast, microsporidia, plants and animals3,4. Schizosaccharomyces pombe Pot1p is essential for telomere maintenance3, and human POT1 has been implicated in telomerase regulation5,6. Pot1 binds telomeric single-stranded DNA (ssDNA) with exceptionally high sequence specificity7, the molecular basis of which has been unknown. Here we describe the 1.9-Å-resolution crystal structure of the amino-terminal DNA-binding domain of S. pombe Pot1p complexed with ssDNA. The protein adopts an oligonucleotide/oligosaccharide-binding (OB) fold8 with two loops that protrude to form a clamp for ssDNA binding. The structure explains the sequence specificity of binding: in the context of the Pot1 protein, DNA self-recognition involving base-stacking and unusual G–T base pairs compacts the DNA. Any sequence change disrupts the ability of the DNA to form this structure, preventing it from contacting the array of protein hydrogen-bonding groups. The structure also explains how Pot1p avoids binding the vast excess of RNA in the nucleus.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/nature02092 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:426:y:2003:i:6963:d:10.1038_nature02092
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02092
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().