EconPapers    
Economics at your fingertips  
 

Optimization of specificity in a cellular protein interaction network by negative selection

Ali Zarrinpar, Sang-Hyun Park and Wendell A. Lim ()
Additional contact information
Ali Zarrinpar: University of California, San Francisco
Sang-Hyun Park: University of California, San Francisco
Wendell A. Lim: University of California, San Francisco

Nature, 2003, vol. 426, issue 6967, 676-680

Abstract: Abstract Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism1: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains2. This raises the potential problem of cross-reaction. It is generally thought that isolated domain–ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented3,4. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity—no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/nature02178 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:426:y:2003:i:6967:d:10.1038_nature02178

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02178

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:426:y:2003:i:6967:d:10.1038_nature02178