Detection of molecular interactions at membrane surfaces through colloid phase transitions
Michael M. Baksh,
Michal Jaros and
Jay T. Groves ()
Additional contact information
Michael M. Baksh: University of California
Michal Jaros: University of California
Jay T. Groves: University of California
Nature, 2004, vol. 427, issue 6970, 139-141
Abstract:
Abstract The molecular architecture of—and biochemical processes within—cell membranes play important roles in all living organisms, with many drugs and infectious disease agents targeting membranes. Experimental studies of biochemical reactions on membrane surfaces are challenging, as they require a membrane environment that is fluid (like cell membranes) but nevertheless allows for the efficient detection and characterization of molecular interactions. One approach uses lipid membranes supported on solid substrates such as silica or polymers1,2: although the membrane is trapped near the solid interface, it retains natural fluidity and biological functionality3 and can be implanted with membrane proteins for functional studies4. But the detection of molecular interactions involving membrane-bound species generally requires elaborate techniques, such as surface plasmon resonance 5 or total internal reflection fluorescence microscopy6. Here we demonstrate that colloidal phase transitions of membrane-coated silica beads provide a simple and label-free method for monitoring molecular interactions on lipid membrane surfaces. By adjusting the lipid membrane composition and hence the pair interaction potential between the membrane-supporting silica beads, we poise our system near a phase transition so that small perturbations on the membrane surface induce dramatic changes in the macroscopic organization of the colloid. We expect that this approach, used here to probe with high sensitivity protein binding events at membrane surfaces, can be applied to study a broad range of cell membrane processes.
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature02209 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:427:y:2004:i:6970:d:10.1038_nature02209
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02209
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().