Probable observation of a supersolid helium phase
E. Kim and
M. H. W. Chan ()
Additional contact information
E. Kim: The Pennsylvania State University
M. H. W. Chan: The Pennsylvania State University
Nature, 2004, vol. 427, issue 6971, 225-227
Abstract:
Abstract When liquid 4He is cooled below 2.176 K, it undergoes a phase transition—Bose–Einstein condensation—and becomes a superfluid with zero viscosity1. Once in such a state, it can flow without dissipation even through pores of atomic dimensions. Although it is intuitive to associate superflow only with the liquid phase2, it has been proposed theoretically3,4,5 that superflow can also occur in the solid phase of 4He. Owing to quantum mechanical fluctuations, delocalized vacancies and defects are expected to be present in crystalline solid 4He, even in the limit of zero temperature. These zero-point vacancies can in principle allow the appearance of superfluidity in the solid3,4. However, in spite of many attempts6, such a ‘supersolid’ phase has yet to be observed in bulk solid 4He. Here we report torsional oscillator measurements on solid helium confined in a porous medium, a configuration that is likely to be more heavily populated with vacancies than bulk helium. We find an abrupt drop in the rotational inertia5 of the confined solid below a certain critical temperature. The most likely interpretation of the inertia drop is entry into the supersolid phase. If confirmed, our results show that all three states of matter—gas7, liquid1 and solid—can undergo Bose–Einstein condensation.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/nature02220 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:427:y:2004:i:6971:d:10.1038_nature02220
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02220
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().