EconPapers    
Economics at your fingertips  
 

Melting of iron at the physical conditions of the Earth's core

Jeffrey H. Nguyen () and Neil C. Holmes
Additional contact information
Jeffrey H. Nguyen: Lawrence Livermore National Laboratory
Neil C. Holmes: Lawrence Livermore National Laboratory

Nature, 2004, vol. 427, issue 6972, 339-342

Abstract: Abstract Seismological data can yield physical properties of the Earth's core, such as its size and seismic anisotropy1,2,3. A well-constrained iron phase diagram, however, is essential to determine the temperatures at core boundaries and the crystal structure of the solid inner core. To date, the iron phase diagram at high pressure has been investigated experimentally through both laser-heated diamond-anvil cell and shock-compression techniques, as well as through theoretical calculations4,5,6,7,8,9,10,11,12,13,14,15,16,17. Despite these contributions, a consensus on the melt line or the high-pressure, high-temperature phase of iron is lacking. Here we report new and re-analysed sound velocity measurements of shock-compressed iron at Earth-core conditions15. We show that melting starts at 225 ± 3 GPa (5,100 ± 500 K) and is complete at 260 ± 3 GPa (6,100 ± 500 K), both on the Hugoniot curve—the locus of shock-compressed states. This new melting pressure is lower than previously reported16, and we find no evidence for a previously reported solid–solid phase transition on the Hugoniot curve near 200 GPa (ref. 16).

Date: 2004
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/nature02248 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:427:y:2004:i:6972:d:10.1038_nature02248

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02248

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:427:y:2004:i:6972:d:10.1038_nature02248