A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans
Scott Kennedy,
Duo Wang and
Gary Ruvkun ()
Additional contact information
Scott Kennedy: Harvard Medical School
Duo Wang: Harvard Medical School
Gary Ruvkun: Harvard Medical School
Nature, 2004, vol. 427, issue 6975, 645-649
Abstract:
Abstract In many organisms, introducing double-stranded RNA (dsRNA) causes the degradation of messenger RNA that is homologous to the trigger dsRNA—a process known as RNA interference. The dsRNA is cleaved into short interfering RNAs (siRNAs), which hybridize to homologous mRNAs and induce their degradation1. dsRNAs vary in their ability to trigger RNA interference: many mRNA-targeting dsRNAs show weak phenotypes, and nearly all mRNAs of the Caenorhabditis elegans nervous system are refractory to RNA interference2,3,4. C. elegans eri-1 was identified in a genetic screen for mutants with enhanced sensitivity to dsRNAs. Here we show that eri-1 encodes an evolutionarily conserved protein with domains homologous to nucleic-acid-binding and exonuclease proteins. After exposure to dsRNA or siRNAs, animals with eri-1 mutations accumulate more siRNAs than do wild-type animals. C. elegans ERI-1 and its human orthologue degrade siRNAs in vitro. In the nematode worm, ERI-1 is predominantly cytoplasmic and is expressed most highly in the gonad and a subset of neurons, suggesting that ERI-1 siRNase activity suppresses RNA interference more intensely in these tissues. Thus, ERI-1 is a negative regulator that may normally function to limit the duration, cell-type specificity or endogenous functions of RNA interference.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/nature02302 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:427:y:2004:i:6975:d:10.1038_nature02302
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02302
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().