EconPapers    
Economics at your fingertips  
 

High levels of atmospheric carbon dioxide necessary for the termination of global glaciation

Raymond T. Pierrehumbert ()
Additional contact information
Raymond T. Pierrehumbert: The University of Chicago

Nature, 2004, vol. 429, issue 6992, 646-649

Abstract: Abstract The possibility that the Earth suffered episodes of global glaciation as recently as the Neoproterozoic period, between about 900 and 543 million years ago, has been widely discussed1,2,3. Termination of such ‘hard snowball Earth’ climate states has been proposed to proceed from accumulation of carbon dioxide in the atmosphere4. Many salient aspects of the snowball scenario depend critically on the threshold of atmospheric carbon dioxide concentrations needed to trigger deglaciation2,5. Here I present simulations with a general circulation model, using elevated carbon dioxide levels to estimate this deglaciation threshold. The model simulates several phenomena that are expected to be significant in a ‘snowball Earth’ scenario, but which have not been considered in previous studies with less sophisticated models, such as a reduction of vertical temperature gradients in winter, a reduction in summer tropopause height, the effect of snow cover and a reduction in cloud greenhouse effects. In my simulations, the system remains far short of deglaciation even at atmospheric carbon dioxide concentrations of 550 times the present levels (0.2 bar of CO2). I find that at much higher carbon dioxide levels, deglaciation is unlikely unless unknown feedback cycles that are not captured in the model come into effect.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/nature02640 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:429:y:2004:i:6992:d:10.1038_nature02640

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/nature02640

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:429:y:2004:i:6992:d:10.1038_nature02640