Deterministic quantum teleportation of atomic qubits
M. D. Barrett,
J. Chiaverini,
T. Schaetz,
J. Britton,
W. M. Itano,
J. D. Jost,
E. Knill,
C. Langer,
D. Leibfried,
R. Ozeri and
D. J. Wineland ()
Additional contact information
M. D. Barrett: NIST
J. Chiaverini: NIST
T. Schaetz: NIST
J. Britton: NIST
W. M. Itano: NIST
J. D. Jost: NIST
E. Knill: NIST
C. Langer: NIST
D. Leibfried: NIST
R. Ozeri: NIST
D. J. Wineland: NIST
Nature, 2004, vol. 429, issue 6993, 737-739
Abstract:
Abstract Quantum teleportation1 provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication2 and quantum computation3. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables4,5,6,7,8,9, and with liquid-state nuclear magnetic resonance10. Here we report unconditional teleportation5 of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement11. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system12,13.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/nature02608 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:429:y:2004:i:6993:d:10.1038_nature02608
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02608
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().