Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte
Chantal Ebel,
Luisa Mariconti and
Wilhelm Gruissem ()
Additional contact information
Chantal Ebel: ETH Zürich
Luisa Mariconti: ETH Zürich
Wilhelm Gruissem: ETH Zürich
Nature, 2004, vol. 429, issue 6993, 776-780
Abstract:
Abstract Haploid spores of plants divide mitotically to form multicellular gametophytes. The female spore (megaspore) of most flowering plants develops by means of a well-defined programme into the mature megagametophyte consisting of the egg apparatus and a central cell1,2. We investigated the role of the Arabidopsis retinoblastoma3,4 protein homologue and its function as a negative regulator of cell proliferation during megagametophyte development. Here we show that three mutant alleles of the gene for the Arabidopsis retinoblastoma-related protein, RBR1 (ref. 4), are gametophytic lethal. In heterozygous plants 50% of the ovules are aborted when the mutant allele is maternally inherited. The mature unfertilized mutant megagametophyte fails to arrest mitosis and undergoes excessive nuclear proliferation in the embryo sac. Supernumerary nuclei are present at the micropylar end of the megagametophyte, which develops into the egg apparatus and central cell. The central cell nucleus, which gives rise to the endosperm after fertilization, initiates autonomous endosperm development reminiscent of fertilization-independent seed (fis) mutants5. Thus, RBR1 has a novel and previously unrecognized function in cell cycle control during gametogenesis and in the repression of autonomous endosperm development.
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/nature02637 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:429:y:2004:i:6993:d:10.1038_nature02637
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/nature02637
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().